就數學普及書寫而言,本書主題近於大學數學系的傳統課程「數學基礎」(foundations of mathematics),是相當罕見且具膽識的選擇。顧名思義,數學基礎探討最基本的數學知識(如自然數概念等)的本質,尤其為什麼它具有確定性(certainty)。這或許可以解釋何以作者提出他所謂的「超基礎數學」(absolutely elementary mathematics)。
由於本書說理與敘事兼備,儘管前者是重頭戲,不過,有時候為了讓讀者暫時擺脫邏輯的必然性「壓力」,作者會在適當時機提供敘事(narrative)。因此,除了在相關脈絡中引進數學家的故事或文學性作品之外,作者也運用了許多比喻(metaphor),讓讀者對於他的說理有了更溫潤的理解可能。
一般來說,具有數學洞察力與寫作才華的數學家書寫普及作品時,都很喜歡針對數學世界進行比喻,以便強化他們的敘事與說明。他們除了模仿啟蒙運動思想家將數學知識比喻成一棵大樹之外,像史都華(Ian Steward)就將數學比喻成為一座風景區,如此一來,他就可以搖身一變為風景區的導覽志工。至於本書作者則「設想數學就像一個城市,城市天際線矗立著三座雄偉的高塔。這三座雄偉的建物分別致力於『幾何』、『分析』和『代數』,探究的對象各是空間、時間及符號和結構」。在這樣的藍圖中,作者希望他所陪伴的主人翁自然數、0、負數和分數,可以為我們訴說這座數學城市的故事。
不過,本書最精采的比喻,則是在第21堂課中,將環(ring)的三重抽象概念類比到法律上的契約的三種內涵。對比威利斯頓(Williston)的《契約》(Contracts),作者指出:在數學這一邊,首先的要求是數學家(以及讀者)願意接受任何公理集合所強制的壓縮;其次,數學家(以及讀者)願意把眼光放遠,不只局限在那些一開始會慫恿我們接受公理的主題身上;最後,願意在公理系統中找出完全由公理創造的事物。而在法律這一邊,則威利斯頓注意到「法律將履行契約視為義務」;其次,法官或陪審團著手了解某些雙邊協議中有足以使協議變成契約的承諾屬性;最後,願意了解契約法所說的契約是什麼。由於數學知識的確定性來自邏輯的「必然性」,因此,作者顯然企圖呼應契約中的某種法律「強制性」。
基於此一數學 vs. 法學之比喻,我們很容易可以猜測本書在數學論證方面的講究。現在,讓我簡介本書內容,或許讀者可以據以體會作者的用心。
本書共有二十五堂課,其中第5、13、16課分別以整課的篇幅,介紹三位數學家(阿伯拉、迪摩根和索菲雅.卡巴列夫斯基)的故事,其餘二十二課內容,就圍繞在自然數、0、負數與分數之概念及其運算所產生的抽象數學結構上。第1-3課主題是自然數與0的命名及位置記數法,其中並提及如何利用集合來定義自然數。在第4課中,作者介紹邏輯學中有關推論形式之意義,特別是與自然數的連結。第6-7課主題是公理系統與皮亞諾公理(Peano’s Axiom)。第8-9課主要解釋加法的定義。第10課主題是乘法的定義,而進一步延伸的,是第11課的基底以及位置記數法。第12課主題是遞迴定理(recursion theorem),其中作者也特別說明它與相關定義法(method of definition)之連結。在第14課中,作者介紹五個算術定律:結合律、交換律、(乘法對加法的)分配律、三一律以及消去律,並且預示運算決定了數系結構之事實。在第15課中,作者說明數學歸納法原理(principle of mathematical induction)與良序原理(well-ordering principle)之關聯。
限於篇幅,我上述這些流水帳式的簡介,看來相當「枯燥乏味」,儘管原書中還是有許多頗為精巧的論證。無論如何,作者顯然覺得此時必須來個「中場休息」,這應該是他在第16課介紹偉大女數學家索菲雅.卡巴列夫斯基(Sofya Kovalevsky)的故事,「不妨體會一下它們隱含的熱情,以及它們引發的戲劇性事件」。
在第17課中,作者演示數學歸納法,以證明加法的結合律。第18課介紹0與負數,其中罕見地提及負數在複式簿記制度中相當好用。第19課主題是整數系。在第20課中,作者引述新代數做為一種符號的科學(science of signs),以及偉大(女)數學家諾特(Emmy Nöther)對現代抽象代數的偉大貢獻。由於諾特的貢獻之一是環(ring),因此,作者緊接著在第21課中,介紹此一抽象代數之結構。然後,在此一關聯中,作者在下一章(第22章)提供「負負得正」之證明。在第23課中,作者從《萊茵德紙草書》談到方程式求解,最終目的是討論多項式(可構成一個環)的角色。第24課主題是除法與分數,並進一步討論分數與小數的表徵形式。第25課的主題是數體(number field),作者引進這些抽象結構,完全基於它們的圓滿自足:「體的定義……本身只告訴我們,數學和『超基礎數學』需要人類心智投注所有力量,創造抽象概念,並且相信這些概念」。最後,在結語中,作者引用《蘇丹在後宮》這一幅畫,來強調數學的本質是關乎「自然生成與人為創造的兩種事物,滿足地彼此共存」。
就訴求目標讀者來說,本書可以跟《社會組也學得好的數學十堂課》(杰瑞.金著,商周出版,2010)做一個對比。後者顯然針對非科學主修大學生的數學通識課程。作者杰瑞.金(Jerry King)使用了數學 vs. 詩篇的類比,強調即使是人文社會科學主修的學生,也可以學好數學。如果一般人可以被詩篇所感動,那麼,他們又何嘗無緣參與數學知識活動呢?杰瑞.金認為基本的邏輯推理訓練、集合論、從自然數經整數、有理數、實數到複數的數系發展、數論、函數(含解析幾何)、機率論以及微積分等等,都是不可或缺的主題。同時,他又高度重視數學知識的結構面向,譬如從自然數系到微積分的縱深統整論述,就明確地演示數學的意義與價值不僅在於它的廣泛應用,而且也關乎它自身的真與美。